COT 6405 Introduction to Theory of Algorithms

Topic 11. Order Statistics

Order statistic

- The i-th order statistic in a set of n elements is the i-th smallest element
- The minimum is thus the $1^{\text {st }}$ order statistic
- The maximum is the n-th order statistic
- The median is the $n / 2$ order statistic
- If n is even, we have 2 medians: lower median $n / 2$ and upper median $n / 2+1$
- By our convention, "median" normally refers to the lower median

How to calculate

- How can we calculate order statistics?
- What is the running time?
- Simple method: Sort first, e.g., Heapsort O(n lg n)
- then return the i-th element

Find the minimum

- How many comparisons are needed to find the minimum element in a set? Or the maximum?

MINIMUM(A)
$\min =A[1]$
for $\mathrm{i}=2$ to A.length
if $\min >A[i]$

$$
\min =A[i]
$$

return min

Find both the minimum $\&$ the maximum

- We can find the minimum with $\mathrm{n}-1$ comparisons
- We can find the maximum with n-1 comparisons
- So we can find both the minimum and the maximum with $2(n-1)$ comparisons

Can we reduce the cost?

- Can we find the minimum and maximum with less than twice the cost, $2(n-1)$?
- Yes: walk through elements by pairs
- Compare each element in pair to the other
- Compare the larger one to maximum, the smaller one to minimum
- Total cost: 3 comparisons per 2 elements = $\mathrm{O}(3 \mathrm{n} / 2)$

Finding order statistics: The Selection Problem

- A more interesting problem is the selection problem
- finding the i-th smallest element of a set
- A naïve way is to sort the set
- Running time takes O(nlgn)
- We will study a practical randomized algorithm with $\mathrm{O}(\mathrm{n})$ expected running time
- We will then study an algorithm with $\mathrm{O}(\mathrm{n})$ worst-case running time

Randomized Selection

- Key idea: use partition() from Quicksort
- But, only need to examine one subarray
- This savings shows up in running time: $\mathrm{O}(\mathrm{n})$
- We will again use a randomized partition
$q=\operatorname{RANDOMIZED-PARTITION}(A, p, r)$
RANDOMIZED-PARTITION (A, p, r)
$i \leftarrow \operatorname{RANDOM}(p, r)$
exchange $A[r] \leftrightarrow A[i]$ return $\operatorname{PARTITION}(A, p, r)$

Randomized Selection

RandomizedSelect (A, $p, r, i)$
if ($\mathrm{p}=\mathrm{r}$) then return $A[\mathrm{p}]$;
$q=$ RandomizedPartition (A, P, r)
$\mathrm{k}=\mathrm{q}-\mathrm{p}+1$;
if (i $==k$) then return $A[q]$;
if (i $<k$) then
return RandomizedSelect(A, p, q-1, ?); else
return RandomizedSelect(A, q+1,r, ??);

Randomized Selection

RandomizedSelect (A, $p, r, i)$
if ($\mathrm{p}=\mathrm{r}$) then return $A[\mathrm{p}]$;
$q=$ RandomizedPartition (A, P, r)
$\mathrm{k}=\mathrm{q}-\mathrm{p}+1$;
if (i $==k$) then return $A[q]$;
if (i $<k$) then
return RandomizedSelect(A, $\mathrm{p}, \mathrm{q}-1, \mathrm{i})$; else
return RandomizedSelect (A, $q+1, r, i-k)$;

Average case analysis

- We can upper-bound the time needed for the recursive call by the time needed for the recursive call on the largest possible input
- In other words, to obtain an upper bound, we assume that the i-th element is always on the side of the partition with the greater number of elements

Analyzing Randomized-Select()

- Worst case: partition always 0:n-1
$-T(n) \leq T(n-1)+O(n)=O\left(n^{2}\right)$
- No better than sorting!
- "Best" case: suppose a 9:1 partition
$-T(n) \leq T(9 n / 10)+O(n)=O(n)(w h y ?)$
- Master Theorem, case 3
- Better than sorting!

Average case analysis (contd)

- We have n ways to partition, $1 / \mathrm{n}$ to choose k

$$
\begin{aligned}
T(n) & \leq \frac{1}{n} \sum_{k=1}^{n} T(\max (k-1, n-k))+O(n) \\
& \leq \frac{2}{n} \sum_{k=n}^{n-1 / 2\rfloor} T(k)+O(n)
\end{aligned}
$$

Why?

Average case analysis (cont'd)

- If n is even, $\mathrm{T}(\lfloor n / 2\rfloor)$ up to $T(n-1)$ appears exactly twice.

$$
\begin{aligned}
& - \text { E.g., } n=4, T(n) \leq 1 / 4(T(\max (0,3))+T(\max (1,2))+ \\
& T(\max (2,1))+T(\max (3,0))=2 / 4(T(3)+T(2))
\end{aligned}
$$

- If n is odd, all these terms appear twice and $\mathrm{T}(\lfloor n / 2\rfloor)$ appears once

$$
- \text { E.g., } n=5, T(n) \leq 1 / 5(T(\max (0,4))+T(\max (1,3))+
$$

$$
T(\max (2,2))+T(\max (3,1))+T(\max (4,0)))
$$

$$
=2 / 5(\mathrm{~T}(4)+\mathrm{T}(3))+1 / 5(\mathrm{~T}(2))<2 / 5(\mathrm{~T}(4)+\mathrm{T}(3)+\mathrm{T}(2))
$$

$$
\begin{aligned}
T(n) & \leq \frac{1}{n} \sum_{k=1}^{n} T(\max (k-1, n-k))+O(n) \\
& \leq \frac{2}{n} \sum_{k=n / 2\rfloor}^{n-1} T(k)+O(n)
\end{aligned}
$$

Average case analysis (cont'd)

$$
(\max (k-1, n-k))=\left\{\begin{array}{lll}
k-1 & \text { if } & k>\lceil n / 2\rceil \\
n-k & \text { if } & k \leq\lceil n / 2\rceil
\end{array}\right.
$$

$$
\begin{aligned}
T(n) & \leq \frac{1}{n} \sum_{k=1}^{n} T(\max (k-1, n-k))+O(n) \quad n \text { is even } \\
& =\frac{2}{n} \sum_{k=[n / 2]}^{n-1} T(\max (k-1, n-k))+O(n) \\
& =\frac{2}{n} \sum_{k=[n / 2]}^{n-1} T(k-1)+O(n) \leq \frac{2}{n} \sum_{k=\lfloor n / 2]}^{n-1} T(k)+O(n)
\end{aligned}
$$

Average case analysis (cont'd)

$(\max (k-1, n-k))=\left\{\begin{array}{lll}k-1 & \text { if } & k>\lceil n / 2\rceil \\ n-k & \text { if } & k \leq\lceil n / 2\rceil\end{array}\right.$

$$
\begin{aligned}
& T(n) \leq \frac{1}{n} \sum_{k=1}^{n} T(\max (k-1, n-k))+O(n) \quad \mathrm{n} \text { is odd } \\
& =\frac{2}{n} \sum_{k=|n / 2|+1}^{n-1} T(\max (k-1, n-k))+\frac{1}{n} T(\max (\lfloor n / 2\rfloor,\lfloor n / 2\rfloor))+O(n)
\end{aligned}
$$

Average case analysis (cont'd)

$$
\begin{aligned}
& T(n) \leq \frac{1}{n} \sum_{k=1}^{n} T(\max (k-1, n-k))+O(n) \quad \mathrm{n} \text { is odd } \\
& =\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor+1}^{n-1} T(\max (k-1, n-k))+\frac{1}{n} T(\max (\lfloor n / 2\rfloor,\lfloor n / 2\rfloor))+O(n) \\
& \quad=\frac{2}{n} \sum_{k=\left\lfloor\frac{n}{2}\right\rfloor+1}^{n-1} T(k-1)+\frac{1}{n} T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+O(n) \\
& \quad=\frac{2}{n} \sum_{k=\left\lfloor\frac{n}{2}\right\rfloor}^{n-2} T(k)+\frac{1}{n} T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+O(n) \\
& \quad \leq \frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-2} T(k)+\frac{2}{n} T(n-1)+O(n) \\
& \quad=\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} T(k)+O(n)
\end{aligned}
$$

Average case analysis (cont'd)

- Use substitution method: Assume $\mathrm{T}(k) \leq c k$, for sufficiently large c
- $T(n) \leq \frac{2}{n} \sum_{k=\left\lfloor\frac{n}{2}\right\rceil}^{n-1} c k+a n$
$=\frac{2 c}{n}\left(\sum_{k=1}^{n-1} k-\sum_{k=1}^{\lfloor n / 2\rfloor-1} k\right)+a n$

$$
=\frac{2 c}{n}\left(\frac{(n-1) n}{2}-\frac{\left.\left(\frac{n}{2}\right\rfloor-1\right)\left\lfloor\frac{n}{2}\right\rfloor}{2}\right)+a n
$$

Average case analysis (cont'd)

$$
\begin{aligned}
\cdot \mathrm{T}(\mathrm{n}) & \leq \frac{2 c}{n}\left(\frac{(n-1) n}{2}-\frac{\left.\left.\left(\left.\frac{n}{2} \right\rvert\,-1\right) \right\rvert\, \frac{n}{2}\right]}{2}\right)+a n \\
& \leq \frac{2 c}{n}\left(\frac{(n-1) n}{2}-\frac{\left(\frac{n}{2}-2\right)\left(\frac{n}{2}-1\right)}{2}\right)+a n \\
& =\frac{2 c}{n}\left(\frac{n^{2}-n}{2}-\frac{\frac{n^{2}}{4}-\frac{3 n}{2}+2}{2}\right)+a n \\
& =\frac{c}{n}\left(\frac{3 n^{2}}{4}+\frac{n}{2}-2\right)+a n
\end{aligned}
$$

Average case analysis (cont'd)

$$
\text { - } \mathrm{T}(\mathrm{n}) \leq \frac{c}{n}\left(\frac{3 n^{2}}{4}-\frac{n}{2}-2\right)+a n
$$

$$
=c\left(\frac{3 n}{4}+\frac{1}{2}-\frac{2}{n}\right)+a n
$$

$$
\leq \frac{3 c n}{4}+\frac{c}{2}+a n
$$

$$
=\mathrm{cn}-\left(\frac{c n}{4}-\frac{c}{2}-a n\right)
$$

$\leq c n$

$$
\frac{c n}{4}-\frac{c}{2}-a n \geq 0->n\left(\frac{c}{4}-a\right) \geq \frac{c}{2}
$$

Worst-Case Linear-Time Selection

- Randomized selection algorithm works well in practice
- We now examine a selection algorithm whose running time is $O(n)$ in the worst case.

Worst-Case Linear-Time Selection

- The worst-case happens when a $0: n-1$ split is generated. Thus, to achieve $O(n)$ running time, we guarantee a good split upon partitioning the array.
- Basic idea:
- Generate a good partitioning element

Selection algorithm

1. Divide n elements into groups of 5
2. Find median of each group (How? How long?)
3. Use Select() recursively to find median x of the $\lceil n / 5\rceil$ medians
4. Partition the n elements around x. Let $k=\operatorname{rank}(x)$
5. if $(i==k)$ then return x if $(i<k)$ then
use Select() recursively to find i-th smallest element in the low side of the partition else
($\mathrm{i}>\mathrm{k}$) use Select() recursively to find ($i-k$)-th smallest element in the high side of the partition

Example

Running time analysis

- At least half of the $[n / 5\rceil$ groups contribute at least 3 elements that are greater than x ,
- except for the one group that has fewer than 5 elements, and the one group containing x itself

Running time analysis (Cont'd)

- The number of elements greater than x is at least

$$
3\left(\left[\frac{1}{2}\left[\frac{n}{5}\right\rceil\right]-2\right) \geq \frac{3 n}{10}-6
$$

- Similarly, at least $\frac{3 n}{10}-6$ elements are less than x. Thus, in the worst case, step 5 calls SELECT recursively on at most $\frac{7 n}{10}+6$ elements.

Running time analysis (cont'd)

- Step 1 takes O(n) time
- Step 2 consists of $O(n)$ calls of insertion sort on sets of size O(1)
- Step 3 takes time $\mathrm{T}([n / 5\rceil)$
- Step 4 takes O(n) time
- Step 5 takes time at most $\mathrm{T}(7 \mathrm{n} / 10+6)$

1. Divide n elements into groups of 5
2. Find median of each group (How? How long?)
3. Use Select() recursively to find median x of the $\lceil n / 5\rceil$ medians
4. Partition the n elements around x. Let $k=\operatorname{rank}(x)$
5. if $(i==k)$ then return x
if $(i<k)$ then
use Select() recursively to find i-th smallest else
($\mathrm{i}>\mathrm{k}$) use Select() recursively to find ($i-k$)-th
element in the low side of the partition
smallest element in the high side of the partition

Running time analysis (cont'd)

- We can therefore obtain the recurrence
- $T(n) \leq T([n / 5])+T(7 n / 10+6)+O(n)$
- Assume $T(k) \leq c k$ for $k<n$, use the substitution method
- $\mathrm{T}(\mathrm{n}) \leq \mathrm{c}[\mathrm{n} / 5]+\mathrm{c}(7 \mathrm{n} / 10+6)+a n$

$$
\leq \mathrm{cn} / 5+\mathrm{c}+7 \mathrm{cn} / 10+6 \mathrm{c}+\mathrm{an}
$$

$$
=9 \mathrm{cn} / 10+7 \mathrm{c}+\mathrm{an}
$$

$$
=c n+(-c n / 10+7 c+a n)
$$

Running time analysis (cont'd)

- $T(n) \leq c n+(-c n / 10+7 c+a n)$
- Which is at most cn if

$$
\begin{aligned}
& --\mathrm{cn} / 10+7 \mathrm{c}+\mathrm{an} \leq 0 \\
& -\mathrm{c} \geq 10 a(n /(n-70)) \text { when } \mathrm{n}>70
\end{aligned}
$$

Linear-Time Median Selection

- Given a "black box" $\mathrm{O}(\mathrm{n})$ median algorithm, what can we do?
- i-th order statistic:
- Find median x
- Partition input around x
- if $(i \leq(n+1) / 2)$ recursively find i-th element of first half
- else find ($i-(n+1) / 2)$-th element in second half
- $T(n)=T(n / 2)+O(n)=O(n)$ (why?)

Worst-case quicksort

- Worst-case $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ quicksort
- Find median x and partition around it
- Recursively quicksort two halves
$-T(n)=2 T(n / 2)+O(n)=O(n \lg n)$

Summary

- Selection() does not require assumptions on the input
- Do not need to sort the whole array, then pick i-th element
- Counting/Radix/Bucket sort assume certain inputs

